Propedeutic Studies
Module Computer science

Academic Year 2023/2024 - Teacher: ANTONIO DI MARIA

Expected Learning Outcomes

The course aims to acquire the main basic concepts of probability and statistics.

General teaching training objectives in terms of learning outcomes:

Knowledge and understanding: The course aims to acquire skills to students about the description of statistical data; Understand the basic terms (population, sample, variable, etc.); Calculation and presentation of frequency distributions; data description with graphical methods; Calculation of central tendency and variability indices; Understand the basis of the assessment of probability of an event and of a random variable; Acquiring concepts related to inferential statistics such as estimates for intervall confidence and hypothesis tests.
Applying knowledge and understanding: identify distributions appropriate to represent the knowledge underlying; solving problems of inferential statistics and probability.
Making judgments : Through concrete examples and case studies, the student will be able to independently develop solutions to specific problems and assess the suitability of a statistical inference problem and solution.
Communication skills: the student will acquire the necessary communication skills and expressive appropriateness in the use of technical language within the general framework of the analysis of data using statistical methods.
Learning skills: The course aims, as the goal, to provide students with the necessary theoretical and practical methods to address and solve problems independently in the statistical analysis of data.

Course Structure

Frontal Lectures.

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.
 

Learning assessment may also be carried out on line, should the conditions require it.

Detailed Course Content

Introduction to probability and statistics: 

  •  Introduction to probability;
  •  Events; 
  • Definition of probability;
  • Conditioned events; 
  • Bayes Theorem; 
  • Discrete Random Variables;
  • Expectation, Variance, Covariance, Standard Deviation; 
  • Bernoulli distribution; Binomial Distribution; Hypergeometric Distirbution; Negative Bionomial Distribution; Geometric Distribution; Poisson Distribution; 
  • Continuos Random Variables;
  • Uniform distribution; Exponoential Distribution; Gaussian Distribution; 
  • Examples and excercices; 
  • Introduction to Descriptive Statitiscs;
  • The data, variables, variability, indeces; 
  • Statistical Inference: parameter estimation, statistical tests; 
  • Examples and excercies; 
  • Introduction to R.

Textbook Information

 Lantieri PB, Risso D, Ravera G: Statistica medica per le professioni sanitarie, II ed. McGraw-Hill

Course Planning

 SubjectsText References
1Introduzione alla bioinformatica: tipi di dati, problemi, strumenti.Capitolo 1 + materiale didattico integrativo fornito dal docente
2Sequenze, ricerca tramite BLAST, allineamento pairwise e multiplo. Algoritmi.Capitoli 3 e 4 + materiale didattico integrativo fornito dal docente
3Attività pratica su allineamento di sequenzeCapitolo 3 + Appendice A +materiale didattico integrativo fornito dal docente
4Banche dati biologiche presenti sul sistema dell'NCBI: nucleotide, protein, OMIM, PUBMED, GENE, SNPCapitolo 2 + materiale didattico integrativo fornito dal docente
5Attività pratica su banche datiCapitolo 2 + Appendice A + materiale fornito dal docente
6Banca dati UNiPROTCapitolo 7 +materiale didattico fornito dal docente
7Cenni sulla programmazione Rhttps://cran.r-project.org/doc/contrib/manuale.0.3.pdf
8Introduzione, statistica descrittivaCapitoli 1 e 3 + materiale didattico integrativo
9Raccolta e organizzazione dei dati, Indici di tendenza centrale e dispersioneCapitoli 4 5 e 6 + materiale didattico integrativo
10calcolo delle probabilità e distribuzioni di probabilitàCapitolo 8 + materiale didattico integrativo
11Rappresentazione grafica dei datiCapitolo 7 + materiale didattico integrativo
12Campionamento e inferenza statisticaCapitolo 10 + materiale didattico integrativo
13Stime di parametri per intervalloCapitolo 9 + materiale didattico integrativo
14Test di ipotesiCapitolo 10 + materiale didattico integrativo